Reflex Modification Audiometry Reveals Dual Roles for Olivocochlear Neurotransmission
نویسندگان
چکیده
Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (-/-)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (-/-)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (-/-) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (-/-) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (-/-). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models.
منابع مشابه
Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.
The objective of the current study was to evaluate the predictive role of the olivocochlear efferent reflex strength in temporary hearing deterioration in young adults exposed to music. This was based on the fact that a noise-protective role of the medial olivocochlear (MOC) system was observed in animals and that efferent suppression (ES) measured using contralateral acoustic stimulation (CAS)...
متن کاملPredicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.
Permanent noise-induced damage to the inner ear is a major cause of hearing impairment, arising from exposures occurring during both work- and pleasure-related activities. Vulnerability to noise-induced hearing loss is highly variable: some have tough, whereas others have tender ears. This report documents, in an animal model, the efficacy of a simple nontraumatic assay of normal ear function i...
متن کاملFrequency tuning of the contralateral medial olivocochlear reflex in humans.
Activation of the medial olivocochlear (MOC) efferents attenuates cochlear gain and reduces the amplitudes of mechanical, electrical, and neural cochlear outputs. The functional roles of the MOC efferents are not fully understood, especially in humans, despite postulations that they are involved in protection against acoustic trauma, facilitation of transient-sound perception, etc. Delineating ...
متن کاملType II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier
The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the 'cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver...
متن کاملProgressive auditory neuropathy in patients with Leber's hereditary optic neuropathy.
OBJECTIVE To investigate auditory neural involvement in patients with Leber's hereditary optic neuropathy (LHON). METHODS Auditory assessment was undertaken in two patients with LHON. One was a 45 year old woman with Harding disease (multiple-sclerosis-like illness and positive 11778mtDNA mutation) and mild auditory symptoms, whose auditory function was monitored over five years. The other wa...
متن کامل